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LINEARADAPTIVE MODELS WITH
PHASE CHARACTERISTICS ADJUSTMENTL

L. M. Osovsky

J2pos” S

The possibility of designing an adaptive model with
adjustment according to phase characteristics is dis-

cussed. The results of simulation and performance of
a linear, second-order adaptive model are described.

H/ o

The recording of frequency characteristics for an experimental in-
vestigation of a prototype requires a large expenditure of time. There-
fore, frequency characteristics have not found wide application in adap-
tive systems with adjustment according to dynamic characteristics.?2
Indeed, each point of the frequency characteristics is determined in a
steady-state, and to obtain the entire frequency characteristic it is
necessary, strictly speaking, to conduct an infinite number of experi-
ments at various frequencies.

However, the practical number of such experiments is limited. It
is known that if an object is described by the minimum-phase transfer
funection
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where by £ 0, an % 0, the minimum number of points required for deter-

mining the frequency characteristics (real and imaginary) is equal to
N = 1/2 (n + m) (Refs. 2, 3). The possibility of using correlation
methods for taking the frequency characteristics at high interference
level is discussed in Reference 4. In the present article, it is

Translation of "Lineynyye Samonsatraivayushchiyesya Modeli s Nastroykoy
po fazovym Kharakteristikam" from "Avtomatika I Telemekhanika" (Automa-
tion and Telemechanics), Izdatel'stvo Akademii Nauk SSSR,. XXIV, No. 2,
1963.

2The material relative to the use of frequency characteristics in adap-
tive systems with adjustment according to dynamic characteristics is

rather fully represented in (Ref. 1).
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proposed to apply this method to simultaneously obtain the necessary num~
ber of points representing the frequency characteristics. This substan-
tially reduces the time necessary to take down the frequency character-
istics and makes possible a wider utilization of well-known frequency
methods in adaptive systems with adjustment according to dynamic char-
lteristics. This is particularly true for adaptive models (Ref. 5).\

In using the frequency characteristics in linear adaptive models,l
it is proposed to describe the simulated object by a transfer function
(1). The coefficients which do not depend on the statistical character-
isties of the prototype (for example bj, ai) are adjusted from the dis-

agreement of the phase characteristics of the prototype and model at a
sufficiently large number of points. The coefficient k is adjusted from
any one point of the amplitude characteristic.

The present article is devoted to the theoretical and experimental
investigation associated with the selection of the controlled parameters
of an adaptive linear model according to phase characteristics by apply-

A A

ing test signals of the type }2=RRO—}ES.Rk£n0mL where N is the number
o 0 |
of points sufficient to determine the phase characteristic.

1. Formulation of the Problem for the Theoretical Investigation
of the Proposed Adaptive Model

We take not one criterion, Q, of dissimilarity between prototype and
model, but a series of individual criteria, Q@ = (Q,..., Qgs--., Qn)

(Ref. 5).
We select the individual criteria in the following manner:
Qi =0 (@4{)‘*—%‘« (@), (2
vhere ¢ (wi) is the value of the phase‘characteristic of the prototype

at the point v = w;, and M (wi) is the wvalue of the phase characteristic

of the model at the point o = w4

lThe term "linear adaptive model" indicates that the simulated object is

linear (Ref. 5).
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For the sake of sgimplicity we shall limit ourselves to linear pro- |
totypes whose dynamics can be described by the transfer function of the
following form:

S g = 1 .
(p) : e R
1 —5—2 agp?
D=

The model of the prototype will be described in the same way:

g==

It is necessary to find out whether we can determine single values
for the dissimilarities between the parameters of the prototype and model
from sufficiently small values of discrepancy in phase characteristics
in a sufficient number of points.

2. Determination of the Dissimilarity in the Coefficients of the
Transfer Function of the Prototype and Model from Known Sufficiently
Small Values of Discrepancy in the Phase Characteristics at a
Sufficient Number of Points

The expression for the individual criteria (2) can be written in
‘the form: - : i - R, _
Vf,’l (o) V:{ (@) ’ ;

Qi= A (@) = —arc tg

|

where A¢(w, ) is the difference in phases between the vectors ———— and
g * Dn o9
D} oy’

V(@) =ImDS (o), U3 (w) = Re D3 (),
" Vx ((.Oi) = Im DI-\,‘,, (j(Di), U. srh: (&)i) w2 Re Dx (j(Di).

Tt is known that

] (4
V@)= 2 (=17 0¥,

a=1




“to Aa._  and Aa

points; i.e., N

-In/2}
U <«>> =1+ 2 (— 1)tay 0.
g=1 (5
For regulated parameters of the model, we take the coefficients
M M
2, of the polynomial operator D (p) and designate by Aaq.the discrepancy

between the parameters of the prototype aZ and the regulated parameters

M
of the model a . We shall assume that Aa is sufficiently small. Taking
4 a

V5 (o)
Ug (@)

to the terms of the first approximation:

8, (o) = - are tg

n

Qo (@) = @ue (@) D) =t

r==]

3% @) |
a 0

Substituting (6) into (3) and taking into account (4) and (5), we obtain

. n» ;
. 99, (w;) ‘
Q=4 ) =) — | Ag =
’ r=1 Oa; o m .
G =0y
B ian (@, ) {n/2] »
A 1

1)4 ‘%‘1 . .
[UM ((01)]2'{‘ [VM (ml) ‘§1< ) [ Aagq

i [n-{—l]
. Uy () )81 201 . o
T @)F + IV (o)F q% (RO 0T A i, 3 % (7)

Expression (7) represents a system of linear equations with respect
2q 2g-1°

In order to determine the increments in coefficients Aagqu, Aagq

jue to A¢(wi) (i =1, 2,..., N), it is necessary to know the discrepancy

in the phase characteristics of the prototype and model A¢(wi) at n

n.

this into account we break down the phase characteristic of the prototype

into a power series of Aaq and limit ourselves
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Let us write the system of linear equations (7) in matrix form:

18021 =141 18a,]

(8)
where L
A(_P'(‘Dl) A‘?l
|agal =] A @) |, [Aaa]| =|Aai,
. | Ag (@n) A,
: — o™ (a3) — @3V () WS T, (o)

i [0 (@) + [V} (@) [T} (@0l + (V3 (en)]? [U} ()] + V3 (e)*
! — U™ (3) — QI (@) G, (02). - o
| JAnl = | (0¥ (@)]2 + [V (@] [UX (@) + [VX (@) [T (@) + VX (@)
— 0 UM (0,) — V(0! WS (,) i
(0% @)+ [V3 @) [0 @)F+ Vi @] [0k )P+ [VhoP

A sufficient condition for determining]aay| fromas,| is that the
matrix “An H not be singular.. In Appendix I it is shown that the matrix
”Ann is almost always not singular. In Appendix IT, it is shown that

for the case when the numerator of the transfer function of the prototype
it not equal to unity, the dissimilarity between the parameters of the
prototype and model is also almost always determined as single-valued by
the discrepancy between the phase characteristics of the prototype and
model in a sufficient number of points.

3. The Description of the Operation of a Linear Adaptive Model
of Second Order

As described above, in order to obtain simultaneously a sufficient
number of points for the phase characteristics of the prototype and

tics (the method of the zero phase (Ref. 4)). The method of the zero
phase 1s based on the following relation. If we have two signals,

f(t) = D cos (wt + @) and x(t) = B sin (et + 6) + n(t), where n(t) is a
stationary random function (interference) with a mathematical expecta-
tion, equal to zero, it is easy to find that:

o T .

| 1 | L orp o

Thoe= gi_fg f(®) (t)dt = DBsin (§ — a),
. 0 i - =

(9

model, we may apply a correlation method for recording phase characteris:

1{")




) Destwtr) , FEE==ESTT T

a{t)=Bsm (wt*e)*ﬂ(t) M3=MC

Figure 1. Schematlc of an Automatlc Control System
for Determining the Phase at Fixed Frequency
where Tgy is the value of the mutual correlation function at the point

T = 0. From relationship(9) it follows that by selecting a value of O
for which 7, = 0 we can determine the unknown phase shift (6 = a). We

note that in reference (L) it is assumed that 9 will be selected manuall
and the generation of the required number of points will be carried out

ever it is possible to use a system of automatic control for this pur-
pose since Toy (6 - a) represents a monotonic function of 6 - & over a

ooy

Isufficiently large interval. This function becomes equal to zZero when
>9 & and it is possible to simultaneously obtain a sufficient number of]
>p01nts of the phase characteristic. It is not difficult to convince

ioneself that this is possible. ~ Indeed, if we let

N—1

* n(t) =n, (t) - Ro - Z Rk sin [og —1— cp(mk)],

k——l

where nl(t) is a stationary random function with mathematical expecta-
tion equal to zero, w % ®ys and. N is a sufficient number of points of

the phase characteristic, then the relationship (9) becomes valid, since

r .
lim —,;,—S F@®n(@)dt = 0.

The principle of operation of the proposed system of automatic
control is clarified by the schematic shown on Figure 1. The signals
x(t) = B sin (0t + 6) + n(t) and £(t) = D cos (wt + @) are fed into the
inputs 1 and 2 of the multiplication circuit MC. The voltage taken from
the integrator output is proportional to the quantity @. It is varied
by varying the time constant of the phase-shift network PSN. In the

by a successive repetition of experiments at various frequencies. How-§

|
|

stationary state, when the constant. component.at-the. input-to-the




integrator is equal to zero, the value of the dc voltage component at
the output will determine the phase shift & = 9, measured with respect

to some reference quantity which is proportional to the voltage Uge

M3=MC

o

‘%u[f}={jkxsinth \L B
|
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Figure 2. Schematic of a Linear Adaptive Model of the
Second Order

The application of the phase-shift network makes 1t possible to var
the phase @ without varying the amplitude D (Ref. 6).

Later we shall introduce one of the possible variations of equip-
ment for an adaptive model with adJjustment according to phase character-
istics. Let us clarify the operation of such an adaptive model by using

an example in which the prototype is described by a transfer function of
the second order:

1 g
DY (p) agp2_+a;’p+1’

W (p) = (10)

o
where a, = 0.09 secg, ai = 0.3 sec.

Figure 2 shows a schematic of an adaptive model having analog cir-
cuits and connected to the prototype B which is connected with regulator
A. The model is continuously fed with a test signal:

T 2
u (t) = Z Ry sin wyt,
k=1 '




8 j

where w2/2n = 0.5 cycles, wl/Qﬂ = 0.1 cycles, Rl =20 volts, and R, = 75

H

volts.
The adaptive model consists of three blocks: block 1 shows the con-

M M
trolled model of the prototype with controllable parameters s and al
which realizes an equation of the same form as (10); block 2 shows the
systems which watch for the variation in the phase-shifts of the har-
monic test signals at the output of the prototype; and block 3 shows a

‘device which determines the discrepancy in the phase-shifts between the
tharmonic test signals at the prototype and model outputs and, from these

discrepancies, controls the parameters a, and a

M
2 1

The frequencies w4 and w2 were selected theoretically in such a way
that the matrix ”Ag“ (see Ref. 8) is close to the diagonal.l In con-

M
formity with this, channels for the adaptation of parameters a2 and al

(Figure 2) are constructed.

I, -Simulation of the Adaptive Model

The simulation of the adaptive model was concerned with three
problems.

e M3=MC
L u(t):'l;li’xsi.n

il cas[w2t+gaz]

Figure 3. Schematic Diagram Showing the Simulation of a Linear
Adaptive Model of the Second Order

This situation in the present case reduces by a factor of two the error
in the determination of the parameters of the prototype associated with

Y

errors in the measurement of phase (instrument errors).
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AT The problen ot testing the sorrelaticn methods 6n & Concrete |
example for simultaneously obtaining, at & sufficient number of points,
(in this case, at two points) the discrepancy in the phase characteris-
tics of the prototype and model.

B. The problem of verifying the theoretical premises regarding the
autonomy of the adaptiveness of the parameters of the model in the case
when the discrepancy values in the parameters of the prototype and model
are substantially greater than the wvalues which are assumed during the
theoretical consideration.

C. The problem of studying the possible limitations placed on the
accuracy and speed of determining the parameters of the prototype. |
|
If we assume that the phase-shift of the harmonic test signals at
the output of the prototype, produced by the variation in the parameters
of the prototype and regulator, vary within small limits (flOO), then
for simulation purposes the general scheme of the adaptive model (see
Figure 2) can be simplified. Therefore, in the simulation of the adap-
tive model, block 2 is omitted. Then the prototype B and regulator A are

imitated by certain fixed values of phase-shifts ¢l = ¢o(wl) and

o]

b0 = ¢ (@2), and it is assumed that the parameters of the prototype
remain fixed while the parameters of the model change with time (see
Figure 3).

In the methodology of the experiment, the values of the parameters
of the model receive a step-like deviation from the wvalues of the param-
eters of the prototype and there is observed a process of convergence of
the model's parameters to the prototype's parameters. This deviation is
realized by varying the voltages, Au, and Aug, (see Figure 3) at which

the adaptive model is in a steady state.
From the results obtained we can .conclude that:

1. The correlation method makes it possible, in principle, to
obtain simultaneously at two points the value of the discrepancy in the
phase characteristics of the prototype and model with an accuracy which
is acceptable for engineering problems. This follows from the very fact
of the convergence of the parameters of the model to the parameters of
the prototype (see Figure 4).

M M )
2. The adaptiveness of parameters ay and a, is practically autono-

1

mous within a large range of initial discrepancies in the parameters
of the prototype and model (tgo% from the fixed values of parameters




eemnmemnces - 10

i
2

a¥) during negative and positive step-like deviations Au.2 (or_Aul) does

=

5, a9 of the prototype). Indeed, the adjustment of parameter a

a 1

(or

not change the values of parameter a¥ (or ag) (see Figure L).

Vi VA / 1. s L VAN L.
II 7 /. /4 L L1 I

< T.L.A.

T.T.A.=Time
Instant at
which the
Disturbance
is applied
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Figure 4. a. Behavior of a2 During a Step-Like Deviation of the
Voltages Au.l and Au2, b. Behavior of a% During the Step-Like

Deviation of the Voltages Aul and Aug.

3. The accuracy and speed of the adaptiveness of the parameters of
the model are limited in the simulation system, first of all by the mag-
nitude of the amplitude of the variable component which passes through

the integrator from the output of the multiplication circuit (Nos. 1 and
2) and produces undesirable oscillations of the values of the parameters

1
of the model. The greater the quality factor, which determines the speeg
of adaptiveness, of the adaptive circuit for the model parameters,

125

The value of the quality factor of the circuits for the adaptiveness of

M M

arameters 85 and al is determined respectively by varying the resist-

|
|
|

ances R, and R2.
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the greater the amplitude of undesirable oscillations of the parameters
of the model. The greatest time of adaptiveness is observed for the

M
channel a;. With an error of 10% (due to undesirable oscillations), the

time of adaptiveness in this channel is 10 minutes. The replacement of
the imitation of the prototype by the prototype itself makes it possible
to estimate that for the same accuracy the time of adaptiveness is de-
creased by one order.

The fact is that the scheme for the simulation of the adaptive model
does not take into account the ac components at the output multiplication
circuits Nos. 1 and 2 (see Figure 2) which are formed during the multi-
plication of the output coordinates of the prototype by the corresponding

parison of the outputs of the prototype and model, as shown in Figure 2,
makes it possible to compensate for the ac components which produce un-
desirable oscillations in the values of the parameters of the model.

APPENDIX T
Lemma. It is proposed that:
‘ S e =
o 2 [n/2]
U@ D) Mgy 0P TE 4V, (0) D) A0l
q=1 . . g=1 '
M
. ' )
— Z “ [2 __(7—21-____1_)] In A’j -1 (ll)
= Fgi—(j+1) : =1 -
A,
[1— 43D .
where | (-1) ? »aﬁau+n%=1 is the matrix line, ,%i—(+1) is the coeffi-

cient of polynomial operator Dn(p), 8o1_(j41) = 0 for 2i - (§ + 1)<0 and
o1 - (§ +1)>n, kj are arbitrary numbers, Vh(m), Un(w) are the imaginary

and regl parts of the polynomial operator Dn(p).

P




—12

We ghall prove the lemma by the method of total induction. We
shall consider two cases: N is an even number and n is an odd number.
Let n be an odd number. Propeosition (ll) ig valid for n = 1. Indeed,
on one hand,

P m ' " e . g - .
Uz (©) D) dygg @24 Vi (@) D) Agq@® P mmaghy, max’max SV Ay ol =0,
g=1 : "g==l a=1

on the other hand,

1
S

Gl

[L_U+n]

Oy by g M) 3D =gy

Let us assume that proposition (11) is valid for n - 1 and prove
its validity for n. ’

In passing from n - 1 to n, we add the following expression in the
left side of (11),

Cnl [n/2]
U, (©) 20"+ (—1) % ", 2 Agg@*71,
| e=1 (12)

and in the right side the expression,

J .’ ' . (mF T, ‘n
.n [1_(7%1) 1
W

7\.1,, . 2 : (=1 ;2 azi—(ﬁ+1)(')2 (i~1) + (—1) 2 a, 2 2"2‘1-—-(‘71»{-1)@2 (i—-l).
-1

g 2 C e

2

It is easy to convince oneself that expressions (12) and (13) are
identical. Since (11) is valid for n - 1 (from the proposition) then,
because expressions (12) and (13) are identical, it follows that propo-
sition (11) is valid for n when n is an odd number. In a similar manner
it is possible to show that (11) is identical when n is an even number.

Theorem. If the senior determinant of Hurwitz, composed of the
coefficients of the transfer function, is different from zero, and if
the number of different frequencies is equal to n, and if the values of
the frequencies are finite and greater than zero, the matrix ”AAI
(see Ref. 8) is not singular.

~ We shall conduct the proof by considering the contrary. Let the

. e 2
matrix HAﬁﬁbe singular. Then, noting that expression U, (wk) + Vi (@3)

41 (13)
2 s

i
{
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A
o

is different from zero,~ we write the linear relation of the elements of]
the columns of the matrix in the following manner: !
' |

|

e PR PP S

‘”ﬂ[ﬂii] —
, A . Im/a) S _ o :
i ’U n(0g) 2 hgqa @F7 2V, () Z Mpg@f P =0 Gimt, 2, ), (1 LL)E

e : a=1 ' ’

where xgq_l and xgq are certain numbers.

In accordance with the proven lemma, expression (1k) is rewritten
in the form:

n ) .
M bkt =0 (*k=1,2...,n),

3 vt (15)
where
A
1. ['i- (_]j:l‘_) i .
bi=l\ =1 2 Gotm(1) gy | M Y
_‘ n i (16)
A

n

Expression (15) represents a homogeneous system of linear equations
with respect to bi. Its determinant is analogous to the determinant of

Van der Mond, and since from the condition of the theorem all frequencies
are different, this determinant is different from zero. It follows from
this that a homogeneous system of linear equations (15) has only a
trivial solution:

b.i =0 ' (i=1, 2, ..., 7). (17)

Taking into account (16) we rewrite (17) in the form:

M

. [ﬁ_QiQ] m -
H (—_1) 2 azi_ (+1) F }"] == (. (18) ’

A,

n

lIf it is equal to zero, then; as we know, the senior determinant of
Hurwitz will be equal to zero. This contradicts the condition of the
theorem,

#
{
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ExXpression (18) represents a homogeneous system of linear equations
with respect to kj' It is easy to see that its determinant is equal to

the senior determinant of Hurwitz. ©Since according to the condition of
the théorem the senior determinant of Hurwitz is not equal to zero, the
system of homogeneous linear equations (18) has only a trivial solution:
Ay = 0(j=1, 2,..., n).

Consequently, the elements of the columns of the matrix ”AnH are

linearly independent and the matrix itself is nonsingular. This was to
be proved. |

It is known that a great number of the senior determinants of Hur-
witz, which are equal to zero, have a dimension equal to zero in the
space of the coefficients of the transfer function. This means that the
matrix "An“ is almost always nonsingular.

APPENDIX II

Let us consider a linear system whose dynamics are described by a
transfer function having a numerator different from unidty:

m

W) =5 = —. (19)

where a, £ 0, o £ 0, a, =1, by =1, npm.

The phase characteristic of the transfer function (19) has the
following form:

Vulp—VpUy

‘arg'VV(]'co) = aratgm ) (20)
where
(7] _
Vy=ImM (o) = D} (—1)T b, e,
¥ q=1 -
[m/2]

Uy =ReM (o= 3 (—1)i,,a%,
) q=0 ’




15 e

[?:i] e
Vp=ImD(jo)= 2 (—1)¥ gy, 0¥,
\ A g=1

[n/2f ‘
Up'=Re D (jo) == 2 (—1)ay, 0%

q==0 .

Expression (20) can be written in the form:

2 ( 1)8—1 25—12 (_1) b a23'-'1_r

arg W ({'0)) = - arc tg =2 - ;s =0 , ( 21)

(=1 0% ) (—1) b,

§==0 r==Q

where b, = O for r>m, a for 2s-1-r>n and 2s-1-r<0, a =0

2s-1-r 2s-r

for 2s-r>n and 2s-r 0.

The phase characteristic of the transfer function (19) will be equa
to the phase characteristic of some transfer functlon whose numergtor is
equal to unity:

. v i 1
V.[/V'(p)= n as Y —
' 2 [ 2 (=)"bag . :pgs ‘+2 [ 2 (-—1)’5,%3_,] P (22)
o s==1 | r==0 re==0

We rewrite (22) in the following manner:

WP =T (23)

where

= 2 (;1)rbrap_r,
= (24)

and CO =1, a = 0 for p-r>n and p-r<L0, br = 0 for r>m.

pP-T

Thus the transfer function (19) can be reduced to an equivalent
(equivalent in the sense that the phase characteristics are equal) trans
fer function with a numerator equal to zero.

In Appendix I, we obtained conditions under which ;.*.Cp can be deter-

mined—-fromAars W'(wk) with—-g-singre-valuer—These-conditions—consist-of

=




the fact that N = n + m, where N is a sufficlent number of points on the;
phase characteristic curve, and the senior determinant of Hurwitz com-
posed of the coefficients of the transfer function (23) must be differeni
from zero.

To determine Aa; (1 =1, 2,vu.,n) end Ab, (3 =1, 2,...,m) from AC,
(p=1, 2,...,0 + m) we write expression (2L4) in terms of increments:

. e .
CAC= D) (—1) [bha, o+ Aba, ] =13, ntm.
: ==y . ’ ‘ ( 25)

Expression (25) represents a system of linear equations with re-

spect to Aav_r and. Abr’ which will have a single-value solution only

when its determinant composed of lines

=078, =0y g, (26)
will be different from zero.

to zero have a dimension egual to zero in the space of the coefficients
of the transfer function (19). This means that generally one can deter-
mine Aa; (i =1, 2,...,n) and Ab<j (3 =1, 2,...,m) fromAaCp, (p =1, 2...
n +m). But AC, (.p=1, 2,...,n + m) can be generally determined from
A arg W' @nk) (or what is equivalent, from arg W Gok) (k =1, 2,...,

n + m) (see Appendix I). Consequently, Aa, (i =1, 2,...,n) and

bj (3 =1, 2,...,m) are generally determined, fromAarg W Q»k)

(k =1, 2,...,n + m) as single-valued.
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